您好,欢迎来到报告大厅![登录] [注册]
您当前的位置:报告大厅首页 >> 望远镜行业分析报告 >> 望远镜行业定义及分类

望远镜行业定义及分类

2015-10-09 14:24:33报告大厅(www.chinabgao.com) 字号:T| T

  你知道望远镜行业定义及分类是什么吗?接下来我们就一起看看吧!以下是由中国报告大厅小编为你整理的望远镜行业定义及分类

望远镜行业定义及分类

  望远镜行业定义

  望远镜是一种利用透镜或反射镜以及其他光学器件观测遥远物体的光学仪器。利用通过透镜的光线折射或光线被凹镜反射使之进入小孔并会聚成像,再经过一个放大目镜而被看到。又称“千里镜”。望远镜的第一个作用是放大远处物体的张角,使人眼能看清角距更小的细节。望远镜第二个作用是把物镜收集到的比瞳孔直径(最大8毫米)粗得多的光束,送入人眼,使观测者能看到原来看不到的暗弱物体。1608年,荷兰的一位眼镜商汉斯·利伯希偶然发现用两块镜片可以看清远处的景物,受此启发,他制造了人类历史上的第一架望远镜。经过近400多年的的发展,望远镜的功能越来越强大,观测的距离也越来越远。1609年意大利佛罗伦萨人伽利略·伽利雷发明了40倍双镜望远镜,这是第一部投入科学应用的实用望远镜。

  望远镜行业分类

  折射望远镜

  折射式望远镜,是用透镜作物镜的望远镜。分为两种类型:由凹透镜作目镜的称伽利略望远镜;由凸透镜作目镜的称开普勒望远镜。开普勒式望远镜的基本原理是首先远处的光线进入物镜的凸透镜,第1次成倒立、缩小的实像,相当于照相机;然后这个实像进入目镜的凸透镜,第2次成正立、放大的虚像,这相当于放大镜。

  因单透镜物镜色差和球差都相当严重,现代的折射望远镜常用两块或两块以上的透镜组作物镜。其中以双透镜物镜(普通消色差望远镜)应用最普遍。它由相距很近的一块冕牌玻璃制成的凸透镜和一块火石玻璃制成的凹透镜组成,对两个特定的波长完全消除位置色差,对其余波长的位置色差也可相应减弱

  在满足一定设计条件时,还可消去部分球差和彗差。由于剩余色差和其他像差的影响,双透镜物镜的相对口径较小,一般为1/15-1/20,很少大于1/7,可用视场也不大。口径小于8厘米的双透镜物镜可将两块透镜胶合在一起,称双胶合物镜,留有一定间隙未胶合的称双分离物镜 。为了增大相对口径和视场,可采用多透镜物镜组。对于伽利略望远镜来说,结构非常简单,光能损失少。镜筒短,很轻便。而且成正像,但倍数小视野窄,一般用于观剧镜和玩具望远镜。对于开普勒望远镜来说,需要在物镜后面添加棱镜组或透镜组来转像,使眼睛观察到的是正像。一般的折射望远镜都是采用开普勒结构。由于折射望远镜的成像质量在同样口径下比反射望远镜好,视场大,使用方便,易于维护,中小型天文望远镜及许多专用仪器多采用折射系统,但大型折射望远镜制造起来比反射望远镜困难得多,因为冶炼大口径的优质透镜非常困难,且存在玻璃对光线的吸收问题,并且主镜镜片会因为重力而发生形变,造成光学质量不佳,所以大口径望远镜都采用反射式。

  伽利略望远镜

  物镜是会聚透镜而目镜是发散透镜的望远镜。光线经过物镜折射所成的实像在目镜的后方(靠近人目的后方)焦点上,这像对目镜是一个虚像,因此经它折射后成一放大的正立虚像。伽利略望远镜的放大率等于物镜焦距与目镜焦距的比值。其优点是镜筒短而能成正像,但它的视野比较小。把两个放大倍数不高的伽利略望远镜并列一起、中间用一个螺栓钮可以同时调节其清晰程度的装置,称为“观剧镜”;因携带方便,常用以观看表演等。伽利略发明的望远镜在人类认识自然的历史中占有重要地位。它由一个凹透镜(目镜)和一个凸透镜(物镜)构成。其优点是结构简单,能直接成正像。

  开普勒望远镜

  原理由两个凸透镜构成。由于两者之间有一个实像,可方便的安装分划板,并且各种性能优良,所以军用望远镜,小型天文望远镜等专业级的望远镜都采用此种结构。但这种结构成像是倒立的,所以要在中间增加正像系统。正像系统分为两类:棱镜正像系统和透镜正像系统。我们常见的前宽后窄的典型双筒望远镜既采用了双直角棱望远镜镜正像系统。这种系统的优点是在正像的同时将光轴两次折叠,从而大大减小了望远镜的体积和重量。透镜正像系统采用一组复杂的透镜来将像倒转,成本较高,但俄罗斯20×50三节伸缩古典型单筒望远镜既采用设计精良的透镜正像系统。

  反射望远镜

  是用凹面反射镜作物镜的望远镜。可分为牛顿望远镜,卡塞格林望远镜等几种类型。但为了减小其它像差的影响,可用视场较小。对制造反射镜的材料只要求膨胀系数较小、应力小和便于磨制。磨好的反射镜一般在表面镀一层铝膜,铝膜在2000-9000埃波段范围的反射率都大于80%,因而除光学波段外,反射望远镜还适于对近红外和近紫外波段进行研究。反射望远镜的相对口径可以做得较大,主焦点式反射望远镜的相对口径约为1/5-1/2.5,甚至更大,而且除牛顿望远镜外,镜筒的长度比系统的焦距要短得多,加上主镜只有一个表面需要加工,这就大大降低了造价和制造的困难,因此口径大于1.34米的光学望远镜全部是反射望远镜。一架较大口径的反射望远镜,通过变换不同的副镜,可获得主焦点系统(或牛顿系统)、卡塞格林系统和折轴系统。这样,一架望远镜便可获得几种不同的相对口径和视场。反射望远镜主要用于天体物理方面的工作。

  折反射望远镜

  是在球面反射镜的基础上,再加入用于校正像差的折射元件,可以避免困难的大型非球面加工,又能获得良好的像质量。比较著名的有施密特望远镜

  它在球面反射镜的球心位置处放置一施密特校正板。它是一个面是平面,另一个面是轻度变形的非球面,使光束的中心部分略有会聚,而外围部分略有发散,正好矫正球差和彗差。还有一种马克苏托夫望远镜

  在球面反射镜前面加一个弯月型透镜,选择合适的弯月透镜的参数和位置,可以同时校正球差和彗差。及这两种望远镜的衍生型,如超施密特望远镜,贝克―努恩照相机等。在折反射望远镜中,由反射镜成像,折射镜用于校正像差。它的特点是相对口径很大(甚至可大于1),光力强,视场广阔,像质优良。适于巡天摄影和观测星云、彗星、流星等天体。小型目视望远镜若采用折反射卡塞格林系统,镜筒可非常短小。

  马克苏托夫望远镜

  一种折反射望远镜﹐1940年初为苏联光学家马克苏托夫所发明﹐因此得名。荷兰光学家包沃尔斯也几乎于同时独立地发明了类似的系统﹐所以有时也称为马克苏托夫-包沃尔斯系统。

  马克苏托夫望远镜的光学系统和施密特望远镜类似﹐是由一个凹球面反射镜和加在前面的一块改正球差的透镜组成的。改正透镜是球面的﹐它的两个表面的曲率半径相差不大﹐但有相当大的曲率和厚度﹐透镜呈弯月形﹐所以﹐这种系统有时也称为弯月镜系统。适当选择透镜两面的曲率半径和厚度﹐可以使弯月透镜产生足以补偿凹球面镜的球差﹐同时又满足消色差条件。在整个系统中适当调节弯月透镜与球面镜之间的距离﹐就能够对彗差进行校正:马克苏托夫望远镜光学系统的像散很小﹐但场曲比较大﹐所以必须采用和焦面相符合的曲面底片。弯月透镜第二面的中央部分可磨成曲率半径更长的球面(也可以是一个胶合上去的镜片)﹐构成具有所需相对口径的马克苏托夫-卡塞格林系统﹐也可直接将弯月镜中央部分镀铝构成马克苏托夫-卡塞格林系统。马克苏托夫望远镜的主要优点﹕系统中的所有表面都是球面的﹐容易制造﹔在同样的口径和焦距的情况下﹐镜筒的长度比施密特望远镜的短。缺点是﹕和相同的施密特望远镜比较﹐视场稍小﹔弯月形透镜的厚度较大﹐一般约为口径的1/10﹐对使用的光学玻璃有较高的要求﹐因此﹐限制了口径的增大。

  目前﹐最大的马克苏托夫望远镜在苏联阿巴斯图马尼天文台﹐弯月透镜口径为70厘米﹐球面镜直径为98厘米﹐焦距为210厘米。

  射电望远镜

  探测天体射电辐射的基本设备。可以测量天体射电的强度、频谱及偏振等量。通常,由天线、接收机和终端设备3部分构成。天线收集天体的射电辐射,接收机将这些信号加工、转化成可供记录、显示的形式,终端设备把信号记录下来,并按特定的要求进行某些处理然后显示出来。表征射电望远镜性能的基本指标是空间分辨率和灵敏度,前者反映区分两个天球上彼此靠近的射电点源的能力,后者反映探测微弱射电源的能力。射电望远镜通常要求具有高空间分辨率和高灵敏度。根据天线总体结构的不同,射电望远镜可分为连续孔径和非连续孔径两大类,前者的主要代表是采用单盘抛物面天线的经典式射电望远镜,后者是以干涉技术为基础的各种组合天线系统。20世纪60年代产生了两种新型的非连续孔径射电望远镜——甚长基线干涉仪和综合孔径射电望远镜,前者具有极高的空间分辨率,后者能获得清晰的射电图像。世界上最大的可跟踪型经典式射电望远镜其抛物面天线直径长达100米,安装在德国马克斯·普朗克射电天文研究所;世界上最大的非连续孔径射电望远镜是甚大天线阵,安装在美国国立射电天文台。

  1931年,在美国新泽西州的贝尔实验室里,负责专门搜索和鉴别电话干扰信号的美国人KG·杨斯基发现:有一种每隔23小时56分04秒出现最大值的无线电干扰。经过仔细分析,他在 1932年发表的文章中断言:这是来自银河中射电辐射。由此,杨斯基开创了用射电波研究天体的新纪元。当时他使用的是长30.5米、高3.66米的旋转天线阵,在14.6米波长取得了30度宽的“扇形”方向束。此后,射电望远镜的历史便是不断提高分辨率和灵敏度的历史。

  空间望远镜

  在地球大气外进行天文观测的大望远镜。由于避开了大气的影响和不会因重力而产生畸变,因而可以大大提高观测能力及分辨本领,甚至还可使一些光学望远镜兼作近红外、近紫外观测。但在制造上也有许多新的严格要求,如对镜面加工精度要在0.01微米之内,各部件和机械结构要能承受发射时的振动、超重,但本身又要求尽量轻巧,以降低发射成本。第一架空间望远镜又称哈勃望远镜 ,于1990年4月24日由美国发现号航天飞机送上离地面600千米的轨道。其整体呈圆柱型,长13米,直径4米 ,前端是望远镜部分,后半是辅助器械,总重约11吨。该望远镜的有效口径为2.4米 ,焦距57.6米,观测波长从紫外的120纳米到红外的1200纳米 ,造价15亿美元。原设计的分辨率为0.005 ,为地面大望远镜的100倍。但由于制造中的一个小疏忽 ,直至上天后才发现该仪器有较大的球差,以致严重影响了观测的质量。1993年12月2~13日,美国奋进号航天飞机载着7名宇航员成功地为“哈勃”更换了11个部件,完成了修复工作,开创了人类在太空修复大型航天器的历史。修复成功的哈勃望远镜在10年内将不断提供有关宇宙深处的信息。1991 年4月美国又发射了第二架空间望远镜,这是一个观测γ射线的装置,总重17吨,功耗1.52瓦,信号传输率为17000比特/秒,上面载有4组探测器,角分辨率为5′~10′。其寿命2年左右。

  双子望远镜

  双子望远镜是以美国为主的一项国际设备(其中,美国占50%,英国占25%,加拿大占15%,智利占5%,阿根廷占2.5%,巴西占2.5%),由美国大学天文望远镜联盟(AURA)负责实施。它由两个8米望远镜组成,一个放在北半球,一个放在南半球,以进行全天系统观测。其主镜采用主动光学控制,副镜作倾斜镜快速改正,还将通过自适应光学系统使红外区接近衍射极限。

  太阳望远镜

  日冕是太阳周围一圈薄薄的、暗弱的外层大气,它的结构复杂,只有在日全食发生的短暂时间内,才能欣赏到,因为天空的光总是从四面八方散射或漫射到望远镜内。

  1930年第一架由法国天文学家李奥研制的日冕仪诞生了,这种仪器能够有效地遮掉太阳,散射光极小,因此可以在太阳光普照的任何日子里,成功地拍摄日冕照片。从此以后,世界观测日冕逐渐兴起。

  日冕仪只是太阳望远镜的一种,20世纪以来,由于实际观测的需要,出现了各种太阳望远镜,如色球望远镜、太阳塔、组合太阳望远镜和真空太阳望远镜等。

  红外望远镜

  红外望远镜(infrared telescope)接收天体的红外辐射的望远镜。外形结构与光学镜大同小异,有的可兼作红外观测和光学观测。但作红外观测时其终端设备与光学观测截然不同,需采用调制技术来抑制背景干扰,并要用干涉法来提高其分辨本领。红外观测成像也与光学图像大相径庭。由于地球大气对红外线仅有7个狭窄的“窗口”,所以红外望远镜常置于高山区域。世界上较好的地面红外望远镜大多集中安装在美国夏威夷的莫纳克亚,是世界红外天文的研究中心。1991年建成的凯克望远镜是最大的红外望远镜,它的口径为10米,可兼作光学、红外两用。此外还可把红外望远镜装于高空气球上,气球上的红外望远镜的最大口径为1米,但效果却可与地面一些口径更大的红外望远镜相当。

  数码望远镜

  被主流科技媒体评为“百项科技创新”之一,由于结构简单,成像清晰,能够用较小的机身长度实现超长焦的效果,在加上先进的数码功能,可以实现较为清晰拍照录像功能,在大大拓宽了望远镜的应用领域,可以广泛的应用在侦查、观鸟、电力、野生动物保护等等。

  数码望远镜具备的拍照功能,可以保存人生历程中经历的众多难忘瞬间,在美国,此款产品广受体育运动教练员、球探、猎鸟人、野生动物观察员、狩猎爱好者以及任何一个摄影、摄像爱好者的青睐。在中国,这一领域的佼佼者,当属watchto系列的远程拍摄设备,尤其是WT- 20A系列和30B系列,目前国内很多公安、军警、野生动物保护已经利用数码望远镜的优势,应用到工作中了,尤其是公安部门,他们可以轻松的远程拍照取证。

  高达5.1百万像素cmos传感器的内置数码照相机结合在一起的。可以快速并简单的从静态高分辨率照片 (2594*1786)拍照转换到可30秒连续摄相。这能确保使您捕捉到最佳效果。照片和录象存储在内存中,或sd卡中,并可以通过可折叠的液晶显示屏查看、删除、通过电视机查看,或不需安装其他软件将照片下载到计算机中。光学部分主要流行的倍率是35倍和60倍,并且可以进行高低倍的切换!( Windows 2000, XP或Mac无需驱动。Windows 98/98SE需要安装驱动)。

  硬X射线调制望远镜

  2015年,作为空间天文领域的重要研究手段,我国在天文卫星发射上将实现零的突破。由中国科学院院士、我国著名高能天体物理学家李惕碚研制的一种新型的天文望远镜——硬X射线调制望远镜(HXMT)将正式升空,成为我国的第一颗天文卫星。

  “按照计划,将在2014年完成HXMT的全部建设,2015年将它送入近地轨道。”中国科学院高能物理研究所研究员、HXMT卫星首席科学家助理张双南在接受《中国科学报》记者采访时说,“天文卫星一般按照探测波段分为射电、紫外、γ射线和X射线天文卫星。正在建设的硬X射线调制望远镜(HXMT)就属于X射线天文卫星。空间天文发展历史上,最早也是从X射线领域突破的。”

  “从功能上,天文卫星可以分为专用和天文台级两种。专用天文望远镜是针对特定的科研目标设计建设的,而天文台级的天文望远镜搭载的仪器就比较多,功能更加强大,可涉及的科学研究范围也更加广。”HXMT属于专用的天文卫星,规模比天文台级小。与其他专用天文卫星相比,HXMT属于中型专用天文卫星。上天後,它将主要承担对黑洞研究,以及与黑洞有关的,比如中子星的研究。”

  在宇宙中,有很多极端的天体,比如黑洞,及其发生的一些极端的物理过程是在地面上无法进行试验和观测的。因此,天文卫星就成了其中最重要的研究手段之一。

  至今,拥有天文卫星的国家和地区可以分为三个梯队,第一梯队由美国独领风骚,第二梯队包括欧洲空间局、欧洲地区一些国家,以及日本、俄罗斯,中国与巴西、印度、韩国及台湾地区属于第三梯队。其中印度是第三梯队中技术最强的,预计一到两年内就会发射他们的天文卫星,而巴西也计划在2014年发射。

更多望远镜行业研究分析,详见中国报告大厅《望远镜行业报告汇总》。这里汇聚海量专业资料,深度剖析各行业发展态势与趋势,为您的决策提供坚实依据。

更多详细的行业数据尽在【数据库】,涵盖了宏观数据、产量数据、进出口数据、价格数据及上市公司财务数据等各类型数据内容。

(本文著作权归原作者所有,未经书面许可,请勿转载)
报告
研究报告
分析报告
市场研究报告
市场调查报告
投资咨询
商业计划书
项目可行性报告
项目申请报告
资金申请报告
ipo咨询
ipo一体化方案
ipo细分市场研究
募投项目可行性研究
ipo财务辅导
市场调研
专项定制调研
市场进入调研
竞争对手调研
消费者调研
数据中心
产量数据
行业数据
进出口数据
宏观数据
购买帮助
订购流程
常见问题
支付方式
联系客服
售后保障
售后条款
实力鉴证
版权声明
投诉与举报
官方微信账号